Learning and generalization tasks predict short-term
cognitive outcome in non-demented elderly

Catherine E. Myers, PhD¹, Alan Kluger, PhD²,³, James Golomb, MD⁴,
Mark A. Gluck, PhD⁵, & Steven Ferris, PhD³

1– Department of Psychology, Rutgers University, Newark, NJ
2– Department of Psychology, Lehman College/CUNY, New York, NY
3- Department of Psychiatry, New York University Medical Center, New York, NY
4– Department of Neurology, New York University Medical Center, New York, NY
5– Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ

Corresponding Author:
Catherine E. Myers
Rutgers University
197 University Ave. Suite 209
Newark, NJ 01102
Phone: 973-353-1080 Ext. 3227
Fax: 973-353-1272
Email: myers@pavlov.rutgers.edu

Keywords:
Aging, cognition, mild cognitive impairment (MCI), Alzheimer’s disease (AD),
hippocampus, memory
Abstract

This study examines whether behavioral measures obtained in non-demented elderly can predict cognitive status at two-year follow-up. Prior studies have established that delayed paragraph recall can help predict short-term risk for decline to mild cognitive impairment (MCI) and Alzheimer’s disease (AD). We examined whether prediction accuracy can be improved by adding a discrimination-and-generalization task that has previously been shown to be disrupted in non-demented elderly with hippocampal atrophy, a risk factor for AD. Fifty non-demented medically healthy elderly patients received baseline clinical diagnosis and cognitive testing; two-years later, patients received a follow-up clinical diagnosis of normal, MCI, or probable AD. Two baseline variables, delayed paragraph recall and generalization performance, were predictive of follow-up outcome with sensitivity of 81% and specificity of 91% – better than the classification accuracy based on either of these measures alone. These preliminary results suggest that these behavioral tasks may be useful tools in predicting short-term cognitive outcome in non-demented elderly.

Acknowledgments:

This work was partially funded by grants to the NYU ADC from the National Institute on Aging (grants AG-P30-08051 and AG-R01-08051) and by a grant to Dr. Gluck from the Institute for the Study of Aging. For assistance in data collection, the authors gratefully acknowledge Alok Vedyas, Valerie Hutchison, Geoffrey Schnirman, and Suditi Gupta. Preliminary results were presented as a poster at the 2005 Society for Neuroscience Annual Meeting.
Introduction

An important issue in gerontology is the ability to predict short-term risk for cognitive impairment in elderly individuals, before the onset of symptoms severe enough to warrant a diagnosis of probable Alzheimer’s disease (AD) or other forms of dementia. Clinically, this is important because existing AD medications act to slow but not reverse or prevent decline; early diagnosis would allow aggressive intervention to prolong high levels of cognitive function for as long as possible. Pharmacological research would also benefit from early diagnosis methods, allowing better identification of at-risk individuals who might be available to participate in trials of new treatments to prevent or delay cognitive decline. Accurate diagnosis would also improve the quality of prognostic information given to patients and family.

Previous work has shown that delayed recall of short paragraphs may be a sensitive indicator of short-term risk for cognitive decline [1]. Non-demented elderly who perform poorly on delayed paragraph recall are at heightened risk to decline to AD within the next 3-4 years [1]. Delayed paragraph recall is impaired in individuals with MCI relative to healthy elderly [2,3], and is also impaired in healthy elderly individuals with hippocampal atrophy [4], a risk factor for developing dementia over the next several years [5]. Thus, delayed paragraph recall has promise as a simple, non-invasive tool for prediction of cognitive decline in non-demented elderly individuals.

One possible explanation for the disruption of delayed paragraph recall in individuals at short-term risk of cognitive decline is its dependence on the hippocampus; indeed, delayed paragraph recall is greatly disrupted in amnesic patients with bilateral medial temporal lobe damage [6]. Radiological studies have demonstrated tissue loss in the hippocampal formation in patients with mild AD [7], and progressive hippocampal dysfunction has been proposed as a possible neuroanatomical basis of AD [8,9,10]. Hippocampal atrophy can also occur in older adults with mild cognitive impairment (MCI), a presumably heterogeneous group that may include individuals with greater-than-average forgetfulness related to aging (age-associated memory impairment or AAMI) as well as individuals with subclinical dementia [11].

In this context, it is possible that other tasks, which are similarly disrupted in individuals with hippocampal dysfunction, might also have utility in predicting short-term cognitive outcome in non-demented elderly. We have considered one such task, a computer-based discrimination-and-generalization task, in which subjects learn a series of visual discriminations and are then challenged to generalize when stimulus information is altered [12]. In prior work, we have shown that non-demented elderly individuals with mild-to-moderate hippocampal atrophy are selectively impaired on the generalization portion of this task, compared to non-atrophied peers [12]; amnesic patients with bilateral medial temporal damage are similarly impaired on generalization [13]. This pattern of impairment in individuals with compromised hippocampal function is similar to that seen on delayed paragraph recall, which led us to ask whether the discrimination-and-generalization task might have similar power to predict incipient cognitive decline in non-demented elderly, and whether the two tasks together might predict cognitive outcome with greater accuracy than either alone.

As an initial investigation of this question, we administered the paragraph recall and discrimination-and-generalization tasks to a group of 50 non-demented elderly
individuals. At baseline, all were diagnosed as cognitively normal or MCI. Two years later, these individuals were re-assessed for cognitive status. We examined the degree to which performance on these two learning tasks at baseline was predictive of two-year cognitive outcome.

Methods

Subjects

53 non-demented, medically-healthy, community-dwelling elderly individuals were initially recruited from among the pool of subjects participating in ongoing gerontological research at the NYU Alzheimer’s Disease Center (ADC). Individuals who apply to participate in research at the NYU ADC receive comprehensive medical, physical, neurologic, and psychiatric evaluations. This includes full behavioral assessment and cognitive testing in an outpatient setting; routine laboratory testing that comprised blood chemistry, serum B₁₂ and folate levels, thyroid function, and urinalysis; and electrocardiograms and clinical brain scans (MRI or CT).

Exclusions were made if any evaluations suggested the presence of a disease state that could affect brain functioning or cognition. Specifically, participants were excluded if there was clinical or brain scan evidence of infarction, inflammation, infection, or neoplastic disease, or if there was any history of psychiatric or neurologic disorder, including affective disorder, Parkinson’s disease, normal pressure hydrocephalus, significant sensory impairment, peripheral neuropathy or severe arthropathy. Also excluded were any participants with more than borderline hypertension (>160/90 mm Hg), with a Hamilton Depression Scale [14] score of 16 or greater, or with a history of excessive alcohol intake.

All participants were diagnosed in an outpatient setting by NYU ADC clinicians, and given a baseline Global Deterioration Scale (GDS) score [15]. This is a 7-point scale with ratings of 1 (no memory deficit), 2 (subjective complaints of memory deficit with no objective evidence), 3 (MCI), 4 (mild dementia), and so on through 7 (severe dementia). For inclusion in this study, participants were required to have a baseline GDS score of 3 or lower. GDS scores were assigned following a semi-structured interview conducted by trained physicians with subjects and with knowledgeable informants such as family members, and were based on the subject’s overall level of cognitive and functional status in accordance with published procedures [15].

Participants were also given a follow-up GDS rating two years (22-26 months) after baseline assessment. At this point, it was determined that three of the participants had developed unrelated medical conditions during the intervening period (mild vascular disease, vitamin B deficiency, or normal pressure hydrocephalus). These participants’ data were excluded post hoc, leaving a final sample size of n=50. This included 28 females and 22 males, with a mean age of 67.46 years (SD 8.5), and mean education level of 15.42 years (SD 2.25).

Informed consent was obtained from all subjects prior to initiation of baseline testing; subjects were volunteers and received no payment for participation in this study.
Baseline and Follow-up Diagnosis

For analysis, we divided this sample in two ways: based on baseline diagnosis, and again based on follow-up diagnosis (independent of baseline status).

At baseline, 39 subjects were classed as cognitively normal (GDS 1 or 2) and formed the Normal-b group; the remaining 11 subjects were classed as mild cognitive impairment or MCI (GDS 3), and formed the Impaired-b group. The Normal-b group included 24 females and 15 males, with a mean age of 66.6 years (SD 8.0). The Impaired-b group included 4 female and 7 males, with a mean age of 70.5 years (SD 10.0). There was no significant difference between Normal-b and Impaired-b groups in baseline age (ANOVA, F(1,48)=1.79, p>.05) or education level (ANOVA, F(1,48)=0.30, p>.05), or in proportion of males and females (Yates-corrected $\chi^2=1.30$, df=1, p>.05).

At two-year follow-up, of the 39 individuals who had been classed as cognitively normal at baseline, eight had declined to MCI (GDS stage 3) and one had declined to probable AD (GDS stage 4). Of the 11 individuals who had been classed as MCI at baseline, six were again diagnosed as MCI; one had declined to probable AD and four were now diagnosed as cognitively normal (GDS stage 2). The 34 individuals classed as cognitively normal at follow-up (regardless of baseline status) formed the Normal-f group. Due to the relatively low number of probable AD cases at follow-up, the individuals classed as MCI and AD at follow-up were combined into a single cognitively impaired group (Impaired-f) for statistical analysis. The Normal-f group included 22 females and 12 males, with a mean age of 67.2 years (SD 9.0); the Impaired-f group included 6 females and 8 males, with a mean age of 68.0 years (SD 7.6). Both of the individuals classed as probable AD were males (ages 69 and 83). The Impaired-f and Normal-f groups did not differ in their baseline age (ANOVA, F(1,48)=0.07, p>.05) or education level (F(1,48)=0.25, p>.05), or in proportion of males and females (Yates-corrected $\chi^2=2.26$, df=1, p>.05).

Procedure

Baseline Neuropsychological Testing

At the time of baseline diagnosis, all subjects received neuropsychological tests including the Logical Memory (LM) subtest of the Wechsler Memory Scale-Revised (WMS-R) [16] including both immediate (LM1) and delay (LM2) portions; the digit span (DIG) and digit symbol substitution (DSST) subtests of the Wechsler Adult Intelligence Scale-Revised (WAIS-R) [17]; and the mini-mental state (MMS) test [18].

In particular, the LM test involves reading a short paragraph aloud to the subject; the subject is then asked to repeat the paragraph immediately from memory, and receives one point for each story element correctly recalled (maximum 25). Immediate recall summed over two paragraphs produces an LM score. Following a 20-minute filled delay, subjects are then asked to recall each story again from memory. Delayed recall summed over the two paragraphs produces an LMII score.

Discrimination-and-Generalization Task

Also at the time of baseline diagnosis, subjects were administered the discrimination-and-generalization task of Myers, Kluger et al. [12]. In brief, this is a short (20 minute) computerized learning task, administered on a Macintosh i-book or comparable computer. Phase 1 is a discrimination learning task. On each trial, the
subject sees a pair of objects, one of which has arbitrarily been designated as correct. The subject learns through trial-and-error to pick the correct object, and enters a response by pressing one of two keys labeled “LEFT” and “RIGHT” to choose the object which appears on the left or the right of the screen (Figure 1A). The chosen object is then raised and, if the subject’s choice is correct, a smiley face is revealed underneath.

Eight such object pairs are trained; within each pair, the objects differ in color or shape but not both. Four of the pairs contain two objects of the same color, such as a green mushroom shape vs. a green frame shape (illustrated in black-and-white in Figure 1A), with the mushroom shape designated as the correct object. In this case, shape can be used to determine the correct answer (left or right); color is redundant and therefore irrelevant with respect to determining the correct answer. The other four object pairs involve two objects of the same shape, such as a red octagon vs. a yellow octagon. In these cases, color can be used to determine the correct answer; shape is redundant and therefore irrelevant with respect to determining the correct answer.

The eight object pairs are trained concurrently, in blocks of 16 trials that contain two presentations of each pair – once with the correct object appearing on the left, and once on the right. Trial order within a block is randomized. Phase 1 continues until the subject makes 16 consecutive correct responses or to a maximum of 96 trials.

Next, phase 2 begins without warning to the subject. Phase 2 is a generalization test. This phase is identical to phase 1 except that, in each pair, the redundant or irrelevant feature is altered. Thus, as Figure 1B shows, one pair would still consist of a mushroom shape vs. a frame shape but the color would be altered (e.g. gray). In pairs where color is the predictive feature, color would remain unaltered, but the irrelevant shape feature would change (e.g. from red octagon vs. yellow octagon to red arrow vs. yellow arrow). Again, phase 2 continues until the subject makes 16 consecutive correct responses, or to a maximum of 48 trials. The entire task, including phases 1 and 2, takes approximately 20 minutes to complete.

For each subject, performance is scored as total number of errors during phase 1 discrimination learning (ERR1) and phase 2 generalization (ERR2). Note that low ERR1 and ERR2 scores therefore indicate good performance.

Data Analysis

The primary outcome measure was follow-up diagnosis (Normal-f or Impaired-f). Based on this follow-up diagnosis, we conducted a stepwise discriminant function analysis with predictors of gender and baseline age, GDS, LMI, LMII, DSST, DIG, MMS, ERR1, and ERR2, to determine which of these baseline measures could be used to predict follow-up diagnosis.

In addition, we examined whether performance on the paragraph recall and discrimination-and-generalization tests differed significantly among individuals given baseline diagnoses of cognitively normal (Normal-b) or cognitively impaired (Impaired-b) – i.e., whether cognitive status at time of testing was predictive of task performance -- and whether performance on these two tasks was correlated within individuals.

Results

Baseline Testing

Table 1 shows group means at baseline for participants given a baseline diagnosis of cognitively normal (Normal-b) or cognitively impaired (Impaired-b). The Normal-b group significantly outperformed the Impaired-b group on MMS (ANOVA, F(1,48)=4.54, p=.038), LMI (F(1,48)=4.30, p=.044), and LMII (F(1,48)=5.33, p=.025), but not on DIG (F(1,48)=0.85, p>.05) or DSST (F(1,48)=3.45, p>.05). Unsurprisingly, there was a strong within-subjects correlation between LMI and LMII scores (Pearson’s r=0.915; p<.001). Therefore, we also computed a % Recall measure as LMII divided by LMI; the Normal-b group average (75.2%, SD 18.9) and Impaired-b group average (67.8%, SD 29.0) were significantly different (ANOVA, F(1,48)=5.64, p=.022).

On phase 1 of the discrimination-and-generalization task, the Normal-b group outperformed the Impaired-b group in terms of ERR1 score (ANOVA, F(1,45)=4.23, p=.045) with no effect of gender (F(1,45)=1.19, p>.05) or age (F(1,45)=0.05, p>.05) and no interactions (p>.05). Overall, subjects performed better on phase 2 (generalization) than phase 1, reflected in significantly lower ERR2 than ERR1 scores (paired-samples t-test, t(49)=4.40, p<.001). However, performance on phase 2 did not differ between groups (ANOVA, F(1,45)=1.53, p>.05) with no effects of age or gender and no interactions (all p>.05). Phase 2 performance depends to some extent on phase 1 performance (Pearson’s r=0.425; p=.002). Accordingly, we also computed a retention measure, defined as ERR2 divided by ERR1; using this measure, the Normal-b group average (63.4%, SD 53.2) and the Impaired-b group average (69.6%, SD 1.17) did not differ significantly (ANOVA, F(1,48)=0.03, p>.05).

The two measures which had previously been shown to be sensitive indices of hippocampal function, LMII and ERR2, showed a significant negative within-subjects correlation (Pearson’s r= -0.472; p=.001); the negative correlation reflects the fact that good performance is reflected in a numerically high LMII score and a numerically low ERR2 score.

Follow-Up Diagnosis

Table 2 shows the mean baseline measurements for subjects who received follow-up diagnoses of cognitively normal (Normal-f) or cognitively impaired (Impaired-f). Table 2 also shows scores for individuals within the Impaired-f group who were diagnosed as MCI or probable AD. The Impaired-f and Normal-f groups did not differ in baseline MMS (F(1,48)=0.01, p>.05), DIG (F(1,48)=1.13, p>.05), or DDST (F(1,48)=2.51, p>.05). However, baseline scores on paragraph recall were higher for the Normal-f group than for the Impaired-f group, as shown in Figure 2. A two-factor ANOVA with between-subjects variable of group and within-subjects variable of immediate vs. delay recall (LMI vs. LMII) confirmed a significant effect of group (F(1,48)=21.48, p<.001) as well as a within-subjects difference on immediate vs. delay recall (LMII<LMI, F(1,48)=101.78, p<.001) but no significant interaction (F(1,48)=2.97, p>.05).
The Normal-f and Impaired-f groups also differed in performance on the discrimination-and-generalization test, as shown in Figure 3. A two-factor ANOVA with between-subjects variable of group and within-subjects variable of discrimination vs. generalization (ERR1 vs. ERR2) confirmed a significant effect of group (F(1,48)=33.33, p<.001), as well as a within-subjects effect of discrimination vs. generalization (ERR2<ERR1, F(1,48)=13.15, p=.001) but no interaction (F(1,48)=2.10, p>.05). Figure 4 shows these data.

Predicting Two-Year Outcome Based on Baseline Measurements

Discriminant function analysis was conducted to determine whether two-year outcome could be predicted based on measurements taken at baseline. A stepwise analysis was conducted on measures of gender, and baseline age, GDS, MMS, DIG, DSST, LMI, LMII, ERR1, and ERR2, with a factor of two-year outcome (Normal-f vs. Impaired-f), and with alpha for adding and removing set to 0.05.

The discriminant analysis identified two variables as predictive: LMII (F-to-remove 8.68, tolerance 0.979) and ERR2 (F-to-remove 19.14, tolerance 0.979). No other variables added significant predictive accuracy. A group classification function was then calculated (coefficients: LMII 0.081, ERR2 –0.74, constant –0.975). This classification function correctly predicted class membership for 13 of 16 Impaired-f cases and 31 of 34 Normal-f cases, for an overall predictive accuracy of 88% (Table 4).

By contrast, a function based on LMII alone correctly classified 11 of 16 Impaired-f cases and 28 of 34 Normal-f cases for an overall predictive accuracy of 78%. A function based on ERR2 alone correctly classified 11 of 16 Impaired-f cases and 31 of 34 Normal-f cases for an overall predictive accuracy of 84%. Thus, a classification function based on both LMII and ERR2 provides greater predictive accuracy than either measure alone.

The six cases that were misdiagnosed by the joint classification function were all individuals who had been diagnosed as cognitively normal at baseline; three were still diagnosed as cognitively normal at 2-year follow-up and three had declined to MCI. Table 3 shows the age and neuropsychological and behavioral measures for these cases, compared to the Normal-f and Impaired-f group means with these six cases excluded. In particular, at baseline testing, cases 1542, 303, and 100 showed relatively strong LMII performance (within 1 SD of Normal group mean) and poor generalization performance (two of three cases show ERR2 greater than 1 SD from the Normal-f group mean).
Conversely, cases 110, 122, 160 showed relatively poor LMII and generalization performance, compared to the Normal-f group means.

Summary and Discussion

The central question being examined here was whether a short battery of neuropsychological tests, administered to non-demented, medically-healthy elderly patients, can predict cognitive outcome at two-year follow-up. The results suggested that two measures in particular, delayed paragraph recall and the generalization component of a discrimination-and-generalization test, could predict with 88% accuracy which individuals would present at follow-up as cognitively normal, or with cognitive impairment (MCI or probable AD). This work builds on earlier studies documenting that delayed paragraph recall can predict cognitive decline in non-demented elderly [1]. However, in the current study, prediction accuracy was improved when both delayed paragraph recall and generalization were considered, relative to either measure alone.

Characteristics of the Sample

In the current data, we found a two-year conversion rate of 2.6% from cognitively unimpaired to AD and of 9.1% from MCI to AD. These conversion rates are broadly consistent with other studies finding that individuals with MCI tend to progress to probable AD at a rate of about 10-15% per year, compared with a conversion rate of 1-3% per year among the cognitively unimpaired elderly [3,19-24]. We also had a relatively high rate of MCI at baseline (11 of 50, or 22%) and of conversion from normal to MCI over the two-year study period (8 of 39, or 21%). These rates are somewhat higher than might be expected from medically-healthy elderly individuals in the broader population, and reflect the characteristics of the volunteers who present themselves at the NYU ADC – many of whom do so in response to subjective concerns about memory decline. Therefore, the current results should be interpreted with caution, both on account of the small sample size and of the characteristics of this sample (see also Limitations and Future Directions, below).

Most strikingly, in the current sample, we found that four cases diagnosed as MCI at baseline were subsequently re-classed as cognitively normal at follow-up (4 of 11, or 36%). This highlights the difficulty assessing cognitive status based on a single evaluation, as an individual’s performance may fluctuate due to factors not directly related to cognitive decline (e.g. attention or motivation), and thus highlights the need for studies that repeat testing several times during a longer follow-up interval (see also Limitations and Future Directions, below).

At the same time, in most cases our behavioral results are consistent with those of prior work. For example, at baseline, our Impaired-b group performed significantly worse than the Normal-b group on several measures that involve learning and memory components, including MMS, LMI, LMII, and ERR1, but not on other tests that do not critically involve recent memory, including DIG and DSST. This difference in LMII between Normal-b and Impaired-b groups is consistent with prior studies showing that delayed paragraph recall is one neuropsychological measure which is particularly likely distinguish subjects with MCI from healthy elderly [2,3]. The Normal-b and Impaired-b groups did not differ significantly on ERR2, which is consistent with our prior finding
that cognitive status (cognitively normal vs. MCI) did not significantly affect
generalization performance on this task [12].

Predicting Two-Year Outcome Based on Baseline Performance

Dividing our sample according two-year follow-up, both paragraph recall (LMI and
LMII) and behavioral task performance (ERR1, ERR2) were significantly different
between the Normal-f and Impaired-f groups; within the Impaired-f group, the AD
subgroup performed especially poorly on these measures. However, only two measures –
LMII and ERR2 – contributed significantly to predicting two-year outcome. When LMII
was considered separately, it alone could provide 78% prediction accuracy, consistent
with prior studies implicating delayed paragraph recall as a simple, noninvasive
procedure that can provide a high degree of accuracy in assessing risk for cognitive
decline [1]. However, in the current study, prediction accuracy could be improved to
88% by considering a short computerized learning and generalization test in addition to
delayed paragraph recall.

In addition to replicating and extending these results, an important direction for
future development will be attempting to improve prediction accuracy still further. In the
current study, out of 50 participants, six cases were misclassified by the discriminant
function. As Table 3 showed, this included three participants who performed relatively
well on LMII and ERR2 at baseline and were accordingly classed with a predicted
outcome of Normal, but who in fact were diagnosed as MCI at two-year follow-up. It
remains an open question whether these three individuals – and, indeed, the rest of our
MCI group – will go on to develop AD, or whether their cognitive impairments do not
reflect prodromal dementia. Conversely, the discriminant function incorrectly classed
three individuals as Impaired (based on poor LMII and ERR2 scores) who were in fact
determined to be cognitively normal at follow-up. Again, it is conceivable that these
individuals are experiencing prodromal AD, at a stage where deficits are seen on these
tasks but not yet in other clinical assessment. Only longer-term tracking of subjects can
provide the answer.

The discriminant function did correctly classify four individuals who were
diagnosed as MCI at baseline but who were re-diagnosed as cognitively normal at two-
year follow-up. All four of these individuals scored as well as or better than the Normal-f
group mean on both LMII and ERR2, suggesting that the baseline clinical diagnosis
might have been improved by including information relating to subjects' performance on
these two tests.

The Hippocampal Connection

One reason why we wished to explore the paragraph recall and discrimination-
and-generalization tasks as predictors of cognitive decline involves the hippocampus. As
mentioned above, patients with mild AD show hippocampal volume reductions, and
progressive hippocampal dysfunction has been proposed as a possible neuroanatomical
basis of AD. Elderly individuals with MCI who show hippocampal atrophy on MRI are
at heightened statistical risk for developing dementia relative to nonatrophyed peers [5].

To the extent that hippocampal atrophy may result in disruption or reduction of
normal hippocampal function, non-demented individuals with hippocampal atrophy due
to prodromal AD might show abnormal performance on tests of hippocampal function,
before abnormalities begin to show up on other, more general tests of memory and cognition. Delayed paragraph recall is one such test, which is known to be dependent on the medial temporal lobes and to be disrupted in amnesic patients with bilateral medial temporal lobe damage [6] as well as in non-demented elderly individuals with hippocampal atrophy [4]. These findings are consistent with the widely-held view that the hippocampus (and related medial temporal lobe structures) are important for formation of new declarative (consciously-accessible and easily-verbalizable) memories [25].

The generalization portion of our discrimination-and-generalization test is another test that is disrupted in amnesic patients with bilateral medial temporal lobe damage [13] as well as in non-demented elderly individuals with hippocampal atrophy [12]. These findings are consistent with a view that, in addition to being important for declarative memory formation, the hippocampus (and related medial temporal lobe structures) are important for new learning which supports subsequent generalization or flexible use of information when conditions alter [26-29]. Our findings are also consistent with the idea that hippocampal system pathology occurs early in AD, and that MCI may often reflect a prodromal stage of AD, when pathology has not yet accrued to the point of causing behavioral symptomatology sufficient for a diagnosis of dementia.

However, it is important to note that not all individuals diagnosed as MCI will inevitably develop AD, nor do they all necessarily have hippocampal atrophy. In addition, it is conceivable that hippocampal atrophy could exist in some subjects due to non-progressive causes or to diseases other than AD. Thus, while our current results are consistent with the observed correlation between hippocampal atrophy and AD risk, we cannot exclude the possibility that our behavioral data reflect some other factors.

Limitations of the Current Study

Several limitations of the current study have been alluded to above; the major limitations of the current study are related to its scope: namely, this study involved a small number of individuals, who were re-assessed only once, a relatively short time after baseline testing. Clearly, larger-scale studies, with repeated assessments over a longer follow-up interval would provide more information about cognitive decline. This would also help elucidate the situation with those individuals who were given baseline diagnoses of MCI but re-classed as cognitively normal at follow-up. Based on information from two time points alone, it is impossible to be sure whether one or the other diagnosis may have been incorrect, or whether the baseline diagnosis of MCI was accurate but represented a short-term condition resulting in transient memory impairments, rather than a progressive cognitive decline. Additionally, it would be of great interest to examine hippocampal volumes in subjects both at baseline and at follow-up, and to attempt to correlate volumetric reductions with behavioral declines.

Another limitation of our study is related to the fact that we administered the paragraph recall and discrimination-and-generalization tests only at the time of baseline diagnosis. It would be preferable to administer these tasks at multiple sessions, to allow the possibility of tracking cognitive decline over time. In fact, the presence in our current sample of several cases who were classified at cognitively impaired at baseline, but later re-classed as cognitively normal at follow-up, highlights the risk of overreliance on measurements taken at a single time point. Multiple testing sessions would reduce this
Myers et al.

risk. Studies are underway to determine the validity of repeat testing with the
discrimination-and-generalization task: to confirm, for example, whether healthy young
adults administered this task at yearly intervals (with new object pairs each time) show a
consistent level of performance on both the learning and the generalization components.
If so, then it may be possible to use the discrimination-and-generalization test to track
cognitive decline in older individuals, to identify a time point at which performance
shows decrements, and therefore to predict incipient cognitive decline.

Another important limitation of this study is the sample itself. Subjects were
recruited from an extremely healthy group of seniors, from which had been excluded
individuals with any of various diseases and disorders that are common in the elderly.
These strict exclusion criteria resulted in a “clean” sample for study, but meant that our
sample was not necessarily representative of the elderly population as a whole. Future
studies should attempt to replicate this study in more representative samples, with fewer
exclusion criteria, to document the degree to which these findings apply to the general
population. Such studies are planned, and will include larger-scale samples, longer
tracking periods, and repeat testing on the discrimination-and-generalization and
paragraph recall tests.

References

aging, mild cognitive decline, and early Alzheimer’s Disease. J Gerontol Psychol Sci
distinguished from Alzheimer disease and normal aging for clinical trials. Arch
Disease: The atrophic hippocampal formation. Am J Neuroradiol 1993; 10:3531-
3542.
253:1380-1386.
7. de Leon M, George A, Stylopoulos L, et al. Early marker for Alzheimer’s disease:
8. Ball M. Neuronal loss, neurofibrillary tangles and granulovacuolar degeneration in
the hippocampus with ageing and dementia. A quantitative study. Acta Neuropathol
(Berl) 1977; 37:111-118.
10. Moscovitch M, Winocur G. The neuropsychology of memory and aging. In: Craik F,
Salthouse T, eds. The handbook of aging and cognition. Hillsdale, NJ: Lawrence
11. Ferris S, Kluger A. Commentary on age-related memory impairment, age-related
cognitive decline and mild cognitive impairment. *Aging Neuropsychol Cogn* 1996;
13. Myers C, Bryant D, DeLuca J, Gluck M. Dissociating basal forebrain and medial
temporal amnesic syndromes: Insights from classical conditioning. *Integrative
15. Reisberg B, Ferris S, de Leon M, Crook T. The global deterioration scale for
17. Wechsler D. *WAIS-R Wechsler Adult Intelligence Scale-Revised Manual*. New York:
Psychological Corporation, 1981.
grading the cognitive state of patients for the clinician. *J Psychiatr Research*
(DAT) in subjects with mild cognitive impairment: The Alzheimer’s Disease
Alzheimer’s disease (CERAD). Part I. Clinical and neurophysiological assessment of
23. Reisberg B, Ferris S, Shulman E, et al. Longitudinal course of normal aging and
progressive dementia of the Alzheimer’s type: A prospective study of 106 subjects
over a 3.6 year mean interval. *Progr Neuropsychopharm Biol Psychiatr* 1986;
10:571-578.
24. Flicker C, Ferris S, Reisberg B. A two-year longitudinal study of cognitive function
27. Gluck M, Myers C. Hippocampal mediation of stimulus representation: A
28. Gluck M, Myers C, Nicolle, M, Johnson S. Computational models of the
hippocampal region: Implications for the prediction of risk for Alzheimer’s disease in
29. Schacter D. Multiple forms of memory in humans and animals. In: Weinberger N,
Table 1. Group means at baseline for subjects given baseline diagnosis of cognitively normal (Normal-b) or cognitively-impaired (Impaired-b); standard deviations in parentheses. MMS=Mini-Mental State test score; LMI, LMII=WMS-R Logical Memory immediate (I) and delay (II) scores; DIG=WAIS-R digit span (forward+backward); DSST =WAIS-R digit symbol substitution score. ERR1, ERR2 =total errors on phase 1 and 2 of the discrimination-and-generalization task. Asterisks indicate significant differences between Normal-b and Impaired-b groups (p<.05).

<table>
<thead>
<tr>
<th>Diagnosis at baseline</th>
<th>N</th>
<th>Age</th>
<th>MMS</th>
<th>LMI</th>
<th>LMII</th>
<th>DIG</th>
<th>DSST</th>
<th>ERR1</th>
<th>ERR2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal-b</td>
<td>39</td>
<td>66.6</td>
<td>29.0* (8.0)</td>
<td>28.0* (6.6)</td>
<td>23.6* (6.7)</td>
<td>12.5 (2.1)</td>
<td>53.5 (11.2)</td>
<td>17.9* (11.8)</td>
<td>9.7 (12.8)</td>
</tr>
<tr>
<td>Impaired-b</td>
<td>11</td>
<td>70.5 (10.0)</td>
<td>28.2 (1.3)</td>
<td>22.9 (9.0)</td>
<td>17.4 (11.3)</td>
<td>11.8 (2.2)</td>
<td>45.7 (15.6)</td>
<td>28.7 (16.6)</td>
<td>16.5 (14.9)</td>
</tr>
</tbody>
</table>

Table 2. Mean (and SD) of baseline neuropsychological and behavioral measurements for subjects diagnosed as cognitively normal (Normal-f) or cognitively impaired (Impaired-f) at two-year follow-up. The Impaired-f group can be further subdivided into individuals diagnosed as MCI or probable AD. Abbreviations as in Table 1. Asterisks indicate significant differences between Normal-f and Impaired-f groups (p<.05).

<table>
<thead>
<tr>
<th>Diagnosis at follow-up</th>
<th>N</th>
<th>Age</th>
<th>MMS</th>
<th>LMI</th>
<th>LMII</th>
<th>DIG</th>
<th>DSST</th>
<th>ERR1</th>
<th>ERR2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal-f</td>
<td>34</td>
<td>67.2 (9.0)</td>
<td>28.9 (1.1)</td>
<td>29.8* (6.4)</td>
<td>25.4* (6.1)</td>
<td>12.6 (2.3)</td>
<td>53.7 (12.0)</td>
<td>16.3* (11.1)</td>
<td>5.3* (7.5)</td>
</tr>
<tr>
<td>Impaired-f</td>
<td>16</td>
<td>68.0 (7.6)</td>
<td>28.8 (1.4)</td>
<td>21.3 (6.4)</td>
<td>15.5 (8.1)</td>
<td>11.9 (1.7)</td>
<td>47.8 (13.1)</td>
<td>28.6 (15.0)</td>
<td>23.9 (14.6)</td>
</tr>
<tr>
<td>MCI</td>
<td>14</td>
<td>66.8 (6.9)</td>
<td>29.1 (1.2)</td>
<td>23.0 (4.8)</td>
<td>17.5 (6.5)</td>
<td>12.0 (1.8)</td>
<td>50.3 (9.6)</td>
<td>26.4 (14.6)</td>
<td>23.8 (14.6)</td>
</tr>
<tr>
<td>AD</td>
<td>2</td>
<td>76.0 (9.9)</td>
<td>27.0 (1.4)</td>
<td>9.5 (0.7)</td>
<td>1.5 (0.7)</td>
<td>11.0 (1.4)</td>
<td>30.0 (25.5)</td>
<td>44.5 (5.0)</td>
<td>24.5 (20.5)</td>
</tr>
</tbody>
</table>

Table 3. Age and neuropsychological and behavioral measurements at baseline for the six subjects whose follow-up outcome differed from that predicted by the discriminant function. For comparison, group means (and SD) are shown for the Normal-f and Impaired-f groups, with these cases excluded. Abbreviations as in Table 1.

<table>
<thead>
<tr>
<th>Case</th>
<th>Baseline Age</th>
<th>MMS</th>
<th>LMI</th>
<th>LMII</th>
<th>DIG</th>
<th>DSST</th>
<th>ERR1</th>
<th>ERR2</th>
<th>Actual Outcome</th>
<th>Predicted Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>1542</td>
<td>64</td>
<td>30</td>
<td>30</td>
<td>25</td>
<td>10</td>
<td>60</td>
<td>33</td>
<td>16</td>
<td>Impaired-f</td>
<td>Normal</td>
</tr>
<tr>
<td>303</td>
<td>66</td>
<td>28</td>
<td>26</td>
<td>23</td>
<td>13</td>
<td>57</td>
<td>23</td>
<td>7</td>
<td>Impaired-f</td>
<td>Normal</td>
</tr>
<tr>
<td>95-100</td>
<td>71</td>
<td>30</td>
<td>25</td>
<td>26</td>
<td>15</td>
<td>58</td>
<td>13</td>
<td>17</td>
<td>Impaired-f</td>
<td>Normal</td>
</tr>
<tr>
<td>97-119</td>
<td>74</td>
<td>30</td>
<td>30</td>
<td>14</td>
<td>10</td>
<td>53</td>
<td>15</td>
<td>8</td>
<td>Normal-f</td>
<td>Impaired</td>
</tr>
<tr>
<td>97-122</td>
<td>75</td>
<td>27</td>
<td>18</td>
<td>15</td>
<td>12</td>
<td>39</td>
<td>44</td>
<td>36</td>
<td>Normal-f</td>
<td>Impaired</td>
</tr>
<tr>
<td>98-160</td>
<td>63</td>
<td>30</td>
<td>31</td>
<td>25</td>
<td>9</td>
<td>52</td>
<td>20</td>
<td>22</td>
<td>Normal-f</td>
<td>Impaired</td>
</tr>
</tbody>
</table>

| Normal-f group mean | 66.9 (9.2) | 30.3 (5.6) | 26.2 (5.4) | 12.7 (2.3) | 54.2 (12.3) | 15.4 (10.4) | 3.6 (4.2) |
| Impaired-f group mean | 68.22 (8.3) | 28.7 (1.4) | 20.0 (6.4) | 13.0 (7.5) | 11.7 (1.5) | 45.0 (13.4) | 29.9 (15.9) | 26.3 (15.0) |

Table 4. Predictive variables identified by discriminant function analysis. Abbreviations as in Table 1.

<table>
<thead>
<tr>
<th></th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>Overall Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMII & ERR2 (combined)</td>
<td>81.3%</td>
<td>91.0%</td>
<td>88.0%</td>
</tr>
<tr>
<td>LMII (alone)</td>
<td>69.0%</td>
<td>82.0%</td>
<td>78.0%</td>
</tr>
<tr>
<td>ERR2 (alone)</td>
<td>69.0%</td>
<td>91.0%</td>
<td>84.0%</td>
</tr>
</tbody>
</table>
Figure 1. Screen events in the discrimination-and-generalization task. (A) During each phase 1 (discrimination learning) trial, a pair of objects appeared that differed in shape or color but not both. The subject would then choose one object by pressing a labeled key. The chosen object was raised and, if the subject’s response was correct, a smiley face appeared underneath. (B) In phase 2 (generalization testing), object pairs were altered so that the previously-irrelevant dimension was novel but the previously-relevant dimension remained the same.
Figure 2. Performance at baseline on (A) immediate (LMI) and (B) delayed (LMII) paragraph recall, as a function of follow-up diagnosis of cognitively normal (Normal-f) or cognitively impaired (Impaired-f), which can be further subdivided into individuals classed as MCI or probable AD.
Figure 3. Performance at baseline on (A) discrimination (ERR1) and (B) generalization (ERR2) task, as a function of follow-up diagnosis of cognitively normal (Normal-f) or cognitively impaired (Impaired-f), which can be further subdivided into individuals classed as MCI or probable AD.
Figure 4. Scatterplot of individual cases, as a function of baseline LMII and ERR2 scores, with cases coded according to follow-up diagnosis of Normal-f or Impaired-f (which includes cases classed as MCI or as probable AD). A boundary line is shown which approximates the discriminant function (discussed below) separating Normal-f from Impaired-f cases; the line is drawn so that the three Normal-f and three Impaired-f cases that are misclassified by the discriminant function fall on the wrong side of this boundary line.